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Synopsis 

Approximate analytic results for two problems involving the inflation of rubber inner tubes and 
tires are summarized with a view to prompting a comparison of the theory with experimental results. 
The problems considered are the uniform inflation by internal pressure of a toroidal rubber inner 
tube or tire which is a perfect torus either in the deformed or undeformed state. The inner tubes 
or tires are assumed to be free to inflate, that is, they are assumed not to be constrained, for example 
by a wheel. 

INTRODUCTION 

The inflation by uniform internal pressure of toroidal rubber inner tubes and 
tires is a technological problem of continuing importance. Kydoniefs and 
Spencer' give a perturbation solution to the inflation problem of a thick-walled 
perfectly elastic material which is a torus in its deformed state. Their solution 
is approximate in the sense that the radius of the larger circle which generates 
the torus is assumed to be small in comparison to the overall radius of the torus. 
With this assumption these authors obtained the zero- and first-order terms of 
the solution, the latter being calculated only for the special case of the neo- 
Hookean material. Recently the author2 has extended the analysis of Kydoniefs 
and Spencer' to the general perfectly elastic material, as well as giving a similar 
approximate solution to the uniform inflation of a thick-walled inner tube or tire 
which is a torus in its undeformed state. As far as practical purposes are con- 
cerned, the nature of these approximations is such that the simple zero-order 
contribution could well be adequate to determine the main characteristics of 
pressure-deformation curves. This would have to be confirmed experimentally 
and the purpose of this article is to present a concise account of the basic equa- 
tions derived in Hill2 and Kydoniefs and Spencer' for the zero-order solution, 
with a view to prompting experimental verification of these formulae. 

The solution of both problems are approximated by the known solution to the 
problem of the uniform inflation by internal pressure of a long circular cylindrical 
tube due originally to R i ~ l i n . ~  This deformation [eq. (16)] involves two arbitrary 
constants K and y. For both problems these two constants are determined from 
the pressure boundary conditions and by considering the overall equilibrium 
of a sector of the torus. The two basic equations for the uniform inflation of a 
thick-walled perfectly incompressible elastic material which is a torus in its 
undeformed state are (21) and (23) where the response functions 61 and 6 2  are 
defined by (6) and the subscript zero denotes evaluation a t  the zero-order de- 
formation given by (16). Similarly for uniform inflation to a torus in its deformed 
state the two fundamental equations are (29) and (32) and in this case the re- 
sponse functions are defined by (11). Almost certainly the zero-order approx- 
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imations will adequately describe the behavior of bicycle inner tubes and tires. 
However, it  remains to be confirmed experimentally whether these simple ap- 
proximations are applicable to inner tubes and tires of the dimensions used on 
motor vehicles. 

In the following section some theoretical preliminaries are noted. In the 
section thereafter the inflation from a torus in its undeformed state is considered 
while in the final section the problem of the inflation to a torus in its deformed 
state is examined. Numerical results are given for both problems for the Mooney 
material. 

COORDINATES AND TERMINOLOGY 

In the undeformed body with rectangular Cartesian coordinates (X, Y,Z)  we 
use toroidal coordinates (R,8,@) defined by 

R = ( [ ( X 2  + Y2)ll2 - b]' + Zz)1/2 

8 = tan-' (Y/X) (1) 

@ = tan-1 ( Z / [ ( X 2  + Y2)1/2 - b ] )  

where b is a constant which denotes the distance from the origin to the center 
of the concentric circles which generate the torus (see Fig. 1). In the deformed 
body with rectangular Cartesian coordinates ( x  ,y,z) we use (r,6,4) given by 

r = ([(A? + y2)1/2 - c]2 + 22]1/2 

4 = tan-1 { z l [ ( x 2  + y2)1/2 - cl) 

8 = tan-1 ( y l x )  (2) 

with c a constant (see Fig. 2). 

a -  " /  , /  

Fig. 1. Coordinates for the undeformed configuration. 
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In the following section we consider a torus which in its undeformed state is 
obtained by rotating the region between two concentric circles of radii R1 and 
R2 about the 2 axis. If the torus is inflated by a uniform internal pressure P I ,  
we suppose an axially symmetric deformation of the form 

r = r (R,@) ,  8 = 8, $ = $(R,%) (3) 

and we use the coordinates in the undeformed body as the independent variables. 
Here the constant b in (1) is prescribed while c has yet to be determined. We 
consider a homogeneous isotropic incompressible hyperelastic material with 
general strain-energy function Z(Il,I2), where I1 and I2 are the principal in- 
variants of the finite deformation strain tensor which are given by 

I1 = I + a2, I2 = a21 + a - 2  

where I and a are defined by 
(4) 

We shall need the following response functions: 

Fig. 2. Coordinates for the deformed configuration. 
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We remark that the incompressibility condition for (3) is 

dr d 4  dr 34 R ( b +  RcosCP) 
bR 3@ dCP bR r(c  + r cos 4) 

- (7) 

In the final section we consider a torus which in its deformed state is obtained 
by rotating the region between two concentric circles of radii rl and r2 about the 
z axis. If the torus is held in this state by a uniform internal pressure P2, then 
we use the coordinates in the deformed body as the independent variables, that 
is, in place of (3) we have 

R = R ( r , 4 ) ,  8 = 8, CP = W , 4 )  (8)  

For this problem the constant c in ( 2 )  is prescribed while b has yet to be deter- 
mined. The principal invariants become 

(9) I1 = p2J + ,k?-2, I2 = J + p 2  
where J and ,f3 are defined by 

We find that in this case the appropriate response functions are 

while the incompressibility condition for (8) becomes 
bR dCP dR 3@ r(c  + r cos 4) 
br 34 34 dr R ( b +  RcosCP) 

- 

Finally in this section we note that the Mooney material has strain-energy 

(13) 

where C1 and C2 are material constants. We use the usual notation r = C2/ 
C1. 

function given by 

z = CI(Z1 - 3) + C2(Z2 - 3) 

UNIFORM INFLATION FROM A TORUS 

We suppose that a torus which in its undeformed state is obtained by rotating 
the region between two concentric circles of radii R1 and R2 about the Z axis is 
such that E = Rs/b is small compared with unity. We introduce 

so that X d 4 d 1 and the deformation (3) becomes 

rl = rl(t,@), 8 = 8, 4 = 4(4,+) (15) 

Now, in the limit of E tending to zero, the problem of determining (15) reduces 
to the problem of the uniform inflation by internal pressure of a long circular 
cylindrical tube (see Rivlin3). Accordingly, we approximate (15) by 





16 HILL 

In (16) and throughout this section we have tacitly assumed (t2 + K )  is always 
positive so that the square root is meaningful. Strictly speaking, in order to 
include the possibility of K large and negative, we should clearly interpret (t2 
+ K1112 as I t2 + K (  1/2. This happens to be the case for the particular problem 
under consideration, and accordingly the modulus signs appear in (24) and (25). 
For this problem y > 1, and, for prescribed A, I', and P I I C ~ ,  (24) and (25) con- 
stitute two equations for the determination of y and K .  The variation of PIIC1 
with y for various values of I' is shown in Figure 3. From (24) and (25) directly 
it is apparent that for I' zero the pressure tends to zero with increasing y. 
However, for I' nonzero the pressure ultimately increases with I'. Figure 4 shows 
the variation of K with y for I' zero and for I' = 0.2. In general, K is positive in 
the range 1 < y < so that for the neo-Hookean material (C, = 0) K is always 
positive. However, for I' nonzero, K is a discontinuous function of y with y = 
P 1 l 2  as an asymptote, as indicated in Figure 4 for r = 0.2. We notice, however, 
that P1IC1 is a continuous function of y. 

UNIFORM INFLATION TO A TORUS 

In this section we consider the problem first studied by Kydoniefs and Spen- 
cer.l By introducing the same symbols as those employed in the previous section 
we can with slight changes make use of some of the equations already given. We 
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Fig. 3. Variation of P1IC1 with y for various values of r and X = 0.9. 
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Fig. 4. Variation of K with y for two values of r and X = 0.9. 

suppose that a torus in its deformed state is obtained by rotating the region be- 
tween two concentric circlespf radii rl  and r2 about the z axis and is such that 
6 = rzlc is small compared with unity. We introduce 

so that again we have X 6 4 d 1. The deformation ( 8 )  becomes 

17 = V(t’4)’ 0 = 8, @ = @(t,$J> (27)  
which we assume depends analytically on c so that the zero-order contribution 
is again that given by (16). The zero-order contributions to J and p are given 
by (17)1 and (17)2, respectively, while we find that the physical components of 
the stress tensor become 
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and all other components are zero. In (28) the pressure functionFo(t) is given 
by (19) with $lo(,$) in place of &o(E).  For an applied internal pressure P2 and 
zero external pressure, we deduce from boundary conditions of the form (20) that 
xo = -y[Pz + Zo(X)l and that 

Again by considering the equilibrium of a sector cut off by the planes 6 = Mo 
we require 

2 i1 c2ae&d[ = PzX2 

On using the result, 
m t 2  + K)$lO(t) & Fo(0 + rZo(E) = - E2 + K t 3 ( t 2  + K )  

and interchanging orders of integration, we obtain from (28)2 and (30) 

Fig. 5. Variation of P ~ I C I  with y for various values of r and X = 0.9. 
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Fig. 6. Variation of -K with y for various values of r and X = 0.9. 

Thus, for a prescribed pressure Pp, (29) and (32) constitute two equations for 
the determination of K and y, and we observe that (32) takes the same form as 
(23), with $10 and $20 in place of $10 and $20, respectively. 

For the Mooney material with strain-energy function (13) eqs. (29) and (32) 
become, respectively, 

For this problem y < 1 and the variation of PpIC1 with y is illustrated in Figure 
5 for various values of r. The variation of -K with y is shown in Figure 6. We 
observe that, as y decreases, -K asymptotes X 2  and that -A2 < K < 0 so that 
modulus signs do not appear in (33) and (34). We also note that in this case the 
results given here are in agreement with those given by Kydoniefs and Spencer1 
for the special case of the neo-Hookean material. 

The author is grateful to Geoffrey Aldis for obtaining the numerical results. 
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